|IEEE

MICROPROCESSOR
UPDATE '

MANUAL

APRIL, 1978

THIRD EDITION

by Karl V. Amatneek

IEEE

uP UPDATE MANUAL
BASED ON THE 6507 UP cHIP
 AND THE PIEEE-77 BOARD

Third Edition

by Kart V Amatneek

April., 1978

Published by the UPDATE Committee of IEEE Philadelphia Section
Charles M Philips:, Chairman

Carroll R Williams., Executive VC

Karl V Amatneek, Education VC

- Copyright (C) 1978 by Karl V Amatnecek. ALL rights reserved.

[N

(7]

N

o0

"~

(%3]

-

—

CONTENTS
MICROPROCESSOR PRIMER

Hand programming of microprccessor-based instruments and
control systems.~-—- review of uPIEEE-77 RZench Programming
Workshop ‘

The general idea of a uP: a bird's eye view

Everything you ever wanted to know about uPs

Capabilities of the uP chip: instructien set and architecture

UP structure, and Llinks to other chips -- what's inside a uP
and how does it work

Minimum chip set for a uP-based instrument
Control circuit schematic -- tailoring of uP control signals

The art of programming
PIEEE-77 COOKBOOK

How to use the board

Programming —- Input/Jutput
Programming -- arithmetic
Programnming -- useful subroutines and programs

Trouble-shooting; debugging

Analég signals
APPENDICES

PIEEE-77 hardware
The TIM program for handling alphanumeric keyboard and display
Vocabulary

Programming tables and aids

INTRODUCTION
THIS MANUAL 1S ADDRESSED TO DESIGNERS OF ELECTRONIC EQUIPMENT.
ITS PURPOSE IS TO PROVIDE THE DCSIGHER WITH PRACTICAL KNOW-HOW FOR

JSING THE UP CHIP WHILE AVOIDING COMPUTER JARGON.,

PROGRAMMING OF THE UP IS VERY SIMILAR TO WIRING OF CHIPS, BUT
THE TECHNIQUES AND SONE OF THE CONCEPTS APPEAR STRANGE AND FORBID-

DING TO THE BEGINNER,

Ve use Hdb-WIRING TO INTERCONNECT THE UP WITH OTHER CHIPS;
WE USE FIRM-WIRING TO MAKE THE SYSTEM PERFORM THE NECESSARY FUNC-
TIONS, Tuz UP cilIP LOOKS UP ITS SCHEDULE OF ACTION IN THE FIRM-
IRED "PROCRAM STORE” (LIKE A VIRING LIST) AND SETS UP CONDUCTING
PATHS AIONG INTERNAL AMD EXTER.JIAL REGISTERS. IHESE PATHS SERVE TO
BRING IN SIGNALS FROM THE OUTSIDE WORLD, MANIPULATE THEM IN MAGNI-
TUDE AND II' TIME, AMD SEND THE!1 OUT AGAIN TO CONTROL THE OUTSIDE

HORLD,

THE LAMGUAGE USED IS ENGINEERING. THE CONCEPTS USED ARE EN-

GINEERING. THE RESULTS ARE LNGINEERING,

YOU CAN STUDY THIS MANUAL FROM THE BEGINNING AS YOU WOULD ANY
OTHER BOOK., LUT IT IS MORE FUN TO STunyY IT wITH THE PIEEE-77 BOARD
ot HAND, I TuAaT case START W I TH CHAPTER II, THE COOKBOOK,
AND BEGIN USING T.!. LOARD TO CENERATE SIGNALS ANL OBSERVE THEM IN
LEDs, o A SCOPE (R WITH A LOUDSPEAKER., /S YCU RUN INTO UNFAMILIAR
TERNS, TUR.! TO Tii IHDEX/CLOSSARY IN Til BACK OF THE MAIUAL AND LOOK
JP DEFIUITIONS; FUR FURTHER I{{FORMATION GO TO THE PAGE REFEREMNCES.
ANY TIME, COME BACK TO THE PROGRAMS AMD LEARM LY DOING.

' KVA

FOREWORD TO THIKD EDITION

Second edition of this Manual was publLished in Yugoslavia
gorn Informatica-77. This, zthe thind, edition has a numbern of ad-
ditions devloped during the yean while Lectruing to TEEE groups a-
nound the country and to indusitry groups both her and 4in Canada.
The neview o4 uPIEEE-77 Bench Programming Workshop was §irnst presen-
ted in Yugosfavia and in Canada. :

Dunding the yearn two Lnternesting developments have taken place --
Commodore, the parent company of MOS Technology, has announced the
cheap PET. computen; and the 6507 {8 now also being manufactured by
Rockwell International.

James and DiCamiflo, our two members who are making the PIEEE-77
board unden the Datac name, have starnted publishing "the datac 1000
usens' group", and a number of Ltems from it are being reprinted
in this Manual.

KVA

HAND PROGRAMMING OF MICROPROCESSOR-BASED INSTRUMENTS AND CONTROL SYSTEMS

Swer 2 cincudit desdgnen finst heans about

mLrrcrrocedsons, he neacts wilh surprdise
mes Zisbelied: why must he buy $20,000
arciz 04 "microprocesson development"
fisezment before he can use the $20 chip?
Tee <zci {48, with modern hand programming
Srceeigues -- unless his project 44 too
Lxrzz -- he doesn't have to buy any equdip-
meel Ic speak of. Lange numbens of

BRsicccr are doing microprocedsor pro-
grom~ing by hand. The advent of cheap
ssxzliz-board systems with hexadecimal key-
Sxzsz tas made hand programming especially

EETtociive.

Thes {8 a neview of the uPIEEE-77 Workshop

oe Zznch Programming of Microprocessons.
Slecc £t was the §4nst such workshop, Zzhe
Pre iings has become a hrdich hesounce
2 bench programming techniques. Tie

mamci-2d neferences are to papers and pa-

- Zhe Proceedings.

L3

™~

0"
ot
LI

§F1 ZEFINITION OF BENCH PROGRAMMING

5~ programming” and "hand programming”

re or less -interchangeable terms.

y speaking, hand programming means
and entering programs by hand in

arit
®m&#z~"ne code via a switch register. While
*%2 t=rm is also used more loosely., bench
pre 'ming means using inexpensive lab
eT. ent to improve upon strict hand pro-
grac=ing.

‘2 :_TERNATIVES TO BENCH PROGRAMMING

w0 main alternatives to bench pro-

(a) purchase of a commercial
and (b) rental of
connected to some

The
gras=ing are
) c=velopment system”,

@ = —=-share terminal

zemzz~y s powerful program for developing
8 P (microprocessor) program. Both
tr=sz zlternatives are expensive. (63-6,
88-51

‘@) = cevelopment system wusually consists
4 icrocomputer with a control panel
Commercial

~ning it conveniently.

While: a development system may
me in writing a program., it also

7

PURCHASE COMMERCIAL
uP DEVELOPMENT SYSTEM
or RENT TIME-SHARE
TERMINAL

[po BENCH PROGRAMMING |

Main reason for bench program-
ming.

Fig. 1.

takes time to learn to use it and to learn
to use it efficiently; it takes time to
service and trouble-shoot it. And. obvi-
ously. while the development system is
down, no programming can be done. While
a development system may be advertised for
both program and hardware development, its
hardware testing facilities are often ina-
dequate [71].

(b) The time-share teaminal, of course., is
not connected to the uP itself, and so it
can not be used to locate wiring errors or
to discover places where signals arrive at
inappropriate times.

(3) ADVANTAGES OF BENCH PROGRAMMING

Bench programming goes hand in hand with
single-board systems: programs can be en-
tered and debugged without the expense or
bulk of a teletypewriter. Thus, work and
learning can proceed in the evenings and
over weekends at home. or even while com-
muting.

Bench programming is obviously but not ne-
cessanily time-consuming; when combined
with some lab equipment. built as the
need indicates, or with inexpensive com-
mercial equipment (complementing single-
board computers), it can result in a sa-
ving of time. [62-1, 63-2, 63-6]

Bench programming forces one to gain a
more intimate knowledge of the uP and its
capabilities. In any case, knowledge of
hand programming is required for patching
(repairing) programs while debugging. Fi-
nally., bench programming leaves one free
to use any uP, whereas development systems
may freeze one into a particular uP chip.

(4) DISADVANTAGES OF BENCH PROGRAMMING

In preparing programs by hand. as compared
to computer-aided preparation of programs,
there is more chance of making an error;
moreover, modification of programs re-
quires laborious rewriting so as to clear
up inserts. To quote Peatman, hand pro-
gramming may be practical, but it is “te-
dious”.[Peatmanl Stratagems and equip-
ment for counteracting these difficulties
are offered in many papers in the Proceed-
ings.

It must be noted here that there are also
commercial and emotional objections to
hand programming. We inherited the uP
chip from computer art, and computer
oeople automatically teach us to use mne-
monics, assembly language and the assem-
dSler, as if that was the only way to make
the uP work. They also want us to use
their "high level"” languages such as Ba-
sic, which is quite unsuitable for uCon-
trollers [12-31].

Computer programmers, who often do't real-
Ly understand control hardware, find it
“unnatural” to consider any other way of
programming but the “missionary” way which
they themselves use to program computers.
They consider bench programming obsolete
and obviously uneconomical, and proponents
of bench programming as frauds [personal
tommunicationl. To them it seems we are
soing back to the ice age.[63-5]

fnowing this attitude of computer program-
mers, manufacturers of uP chips produce
cevelopment systems. To a uP chip manu-
facturer the great virtue of a development
system lies in the fact that this $5-20K
investment will make a user hesitate to
switch to a chip by a different manufactu-
rer that would again require a similar in-
vestment. Manufacturers of more versa-
tile development systems, who do not them-
selves make uP chips: simply hate to lose
csotential sales to bench programming.

ind then, of course, there are the ambi-
tious managers who should know better.,

2nd the young engineers who don't know any
2etter: they like to show off by doing
things in an “"elegant”™, “"sophisticated"”

or "modern” way regardless of cost. of
tourse, much technical satisfaction is de-
rived from punching the typewriter and
seeing things happen.

{5) PRACTITIONERS OF BENCH PROGRAMMING

Zespite this commercial and emotional op-
position, there are many small and large
sractitioners of bench programming. Among
them are groups in Western Electric, RCA
@and Essex Wire,for instance. ALl of them
mave successful products on the market
that were designed in bench programming
fashion.

1=2

One 5-million dollar company exists on
bench programming alone. (21, 22] And the
very first bench programming conference.,
UPIEEE-77, attracted 95 practitioners of
bench programming from large and small
companies.

(6) uP BOARDS WITH HEX KEYBOARDS

Bench programming has been practiced ever
since uPs were first invented 6 years ago.
The outstanding advocate and practitioner
is the Pro-Log Corp.[21, 221 Bench pro-
gramming took a big step forward with the
proliferation of single-board systems
equipped with a hex keyboard for entering
programs in machine code. Single-board
computers made by MOS Technology. Motoro-
la, National Semiconductor, RCA, as well
as many smaller companies. all have the
hex keyboard.

Fig. 2. A hex keyboard.

Programs to control the real world can be
developed on paper starting with a high-
level statement of the task to be accom-
plished:, and then making it more and more
detailed.(12] The program is finally
translated into hex code and hand-keyed
into temporary program store (memory chip)
on the board.

For storage overnight, the temporary pro-
gram may be stored either in a BRAM (Bat-
tery-supported memory) [63, 65-3], or in
an inexpensive music cassette.[63-6]

After a temporary program has been proved
out, it may be burned into aUYROM (Ultra-
Violet Erasable Read-Only-Memory). A
UVROM burner may be constructed by the
user, or else commercial UVROM burners
[22-7]1 may be purchased at various prices.
Some inexpensive UVROM burner cards will
automatically burn in the program directly
from the temporary program store, without
further hand keying.

The PIEEE-77 board developed for the IEEE
[Amatneek] and the 0SI-300 board of Ohio
Scientific Instruments. have a binary

switch register for hand programming. I i~
tersil has a single-board computer that is
equipped with a keyboard where each key is
.abelled with an instruction.[33]

il of these boards also have single-step
and other circuitry to assist program de-
2ugging and hardware trouble-shooting.Some
“ave cassette storage and retrieval pro-
srams. Some have sockets wired for
-¥YROMs plus unwired sockets for applica-
tion requirements. The PIEEE-77 board
%2s a speaker for audio monitoring and
w0 LEDs for visual monitoring or trouble
shooting.

{7) ASSIST EQUIPMENT AND PROGRAMS FOR
VARIOUS STAGES OF BENCH PROGRAMHING

Zench "programming” encompasses (a) writ-
‘ng the program in near-natural lang-
<2ge and detailing it to just-short of
machine language, (b) one-by-one coding it
‘nto machine language and entering the
tode into temporary program store., (c) de-
2ugging the program so that it works and
$0 that it does what it is supposed to do.
{d) if any of the hardware in newly de-
signed, trouble-shooting it for signal
mistiming and for errors in wiring.

=ork on these &4 stages may be speeded up.,
and errors may be reduced., by using hard-
«2re and software assistance.

{2) Programming proper. For writing and
ceveloping the program on paper, some pre-
srinted form is useful.[21-5, 43-71] Some
zrogress has been made toward providing
2ssist software for this phase.[12-101

‘2) Coding and entering the program into

temporary program store. Not only is
coding of the program time-consuming. it
s also very error~prone; and coding er-
rors are difficult to locate. These
troubles could. be greatly reduced by a
srogram., running on the uC itself, which
=ould translate a program writtén in eng-
‘neering symbols (from a $60 typewriter
tzyboard [44]) directly into machine code.,
and store it in temporary program store.
143]

{c) Program debugging.
zan be done with the assistance of hard-

=3re (circuits for stopping the uP after
zzch program step so that registers may be
zxamined and modified without the uP);[61]
2r it can be done in software =-- using the
> with a special program such as "break-
ing” the program at suspicious points and
zxamining and modifying contents of regis-
ters.[62])

#rogram development can also be done by
tonnecting the uP board (the "target”™) to
2 sepanate uContrnoller (the "host”™) with a

Z

Program debugging

1-3

special program for exercising the target
uP. The host may be a commercial uCompu-
ter, wunrelated to the target uP [64, 651,
or it may be similar to the target uP.[63)

(d) Trouble-shooting of new hardware. 1f
the controller will contain new circuits.
there will be signal timing and miswiring
problems that will have to be located and
corrected. Program debugging schemes
also have provisions for hardware trouble-
shooting.[61 to 651 The readouts may be
digital, or there may be provision for
triggering a lab scope.[62]

Regardless of what debugging scheme s
used, much debugging and trouble-shooting
time may be saved by snatching a sequence
of the flow of addresses and data on their
buses while the uP is running at full
speed. This stored information can then
be searced thoroughly and methodically for
program, Wwiring and timing errors. Such
data analyzing equipment may be built up
on a card [71] or it may be purchased for
a few hundred dollars.[72]

(8) TECHNIQUES OF BENCH PROGRAMMING

If we choose to do our programs at the

-bench, how do we go about it?

Bench programming is not a single, rigid
method; rather, it is a search for tech-
niques that will produce reliable pro-
grams cheaper and quicker. With that in
mind, the following is a likely procedure
at the present time; we will discuss it
item for item.

1 Write the program

2 Choose the uP and translate the pro-
gram into machine code

3 Test run the board with substitute I/0

4 Develop the real system

1 WRITE THE PROGRAM

Designer writes a uP-independent sequence
of labelled steps -- the progran -- that
will satisfy the requirements:

1A Ascertain performance requirements

User provides a sect of requirements to
which the instrument is to perform. Note
that at this point no uP need %e speci-
fied.

18 Choose a high-level ("systems™)
language

The program is written in natural language
so that the user can understand it. How-
ever, it is written in a special, short.,
stylized, easy-to-learn format, so that it
may eventually be expanded easily into uP
steps. One such language is TLC.[12]

i2y, the instrument is to play a tune --

scquence of square waves of stated dura-
tion dn and stated p-riod pn such as in
this list: dI pl, 42 p2, d3 p3, etc. (431
The program could read as follows:

io0p
N do FETCH DURATION from list ,
do FETCH PERIOD trcm List
do PLAY NOTE on specaker
do INCREMENT NOTE POINTER to point at
next note
pool

“%e four capitalized statements are Labels
Tz be spelled out in deteil later. The
wnderlines _ are connectors to join the
fc'ds into a single lab=l. "pool” is
‘oop” spelled backwards; these are even-
twzlly to be spelled out in the machine
z2de of the uP.

c Interaction between user and designer

¥ the control instrum2n: 1is to be multi-
m2de (multi-purpose). the user will need
2=z or more keys with which to choose the
fzsired mode. If the number of modes is
~2rge, or if the user will also have to
#=ter numerical values, a special keyboard
zrogram may be useful. such as AOK (Appli-
tztions-Oriented Keyboard).[42, 11-3]

-.uses spoken language.
2 designer and user interact to assure
*2t, on the one hand, the indicated re-

-‘rements are in fact true, and that, on
"2 other hand. the proposed sequence of
steps will 1indeed satisfy these reguire-
ments.

‘nce the program

LA - B T

=~ instance, in the above example, the
r may bring up a thought that had not
irred to him befora: let the tune be
ated if desired. The program is then
ified to take care of this new require-

R
Lo nm
m ¢

®Omaom o
- -

o

A&}

“"

0 set NOTE POINTER=START
oop -
do FETCH DURATION
if DURATION=00.
if REPEAT ENABLE=0MN
exit this loop
do FETCH PERIOD
do PLAY HOTE
do INCREMENT_NOTE_POINTER
pool o
%zw. when the DURATION of the next note is
I2. and if the repeat is desired (REPEAT_
£923LE has been turned ON), the program
= .. exit from the inner loop and jump
Zzck to fetch the, first note by setting
®ITE_POINTER to START value.

/

10 Detail the program

The designer then spells out in detail how
the labels will be executed (short of get=
ting involved in uP mechanics).

Here the modern viewpoint is that, first
and foremost, programs must be easy to un-
derstand. easy to debug and easy to modij-
fy. To achieve this:, 3 buzz-words are
currently in vogue: Top-down sequence.
“structured” instructions 1); and modul-

ar subdivisions.[12-2, 211

Top-down sequence means disciplining your-
self to work on developing the ©progran in
an orderly fashion, starting with the sta-
tement of requirements (top) down to ma-
chine language, without jumping back and
forth.

Structured instructions means using only a
[imited nunber of chosen instruction se-
quences (structures). Structured pro-
gramming prohibits multiple entrances and
exits, and it prohibits the jump instruc-
tion with absolute address. Moreover,
only 5 structures are permitted: linear;
if-then-else do a relative jump; do while;
loop; and subroutine.

The reason for this delimiting of the

freedom of choice lies in the fact that
most computer programs have been difficult
to comprehend. (0f course, a structured
program is more difficult to write.[11-51)

Modular subdivisions means programs subdi-

1de into portions not more than one
typewritten page each, each page (module)
performing a “"do this" function. or a set
of such functions. The purpose of this
approach is to make each module comprehen-
'sible to the eye at a glance.

1E Decide on interfaces to the real world

As the designer
the program into

spells out each step of
more and more detailed

actions, he makes his choices of what in-
terfaces (from TTL voltages to the real
world) he will need to bring the program

steps to practical realization.

2 CHOOSE THE uP AND
TRANSLATE THE PROGRAM INTO MACHINE CODE

When the user has approved the final pro-
gram, the designer can <choose a uP (if
there is a choice) by translating samples
of the program into the machine language
of each uP.[41, 43-3,4] He can base his
choice on the difficulty in translating;
on the number of bytes required; and on
the final speed of execution. These
three parameters are likely to be differ-
ent from uP to uP. If the three paramet-
ers are not important to the application,
any uP can do the job.

1-4

the approved program
line into machine

=aving chosen the uP,
is translated Lline by
code.

3 TEST RUN THE BOARD WITH DUMMY 1/0

At this point all the paper work is put to

the test against the merciless logic of
the uP. It is nearly impossible to write
2 procram that will run on the first try.,
Zut using the TLC langueage tc evelop the

srogram is a significant step forward.

ERY Obtain board and make I1/0 dummies

=aving chosen the uP, the designer obtains
2 ready-made uP board (uhi:h can lLater be
redesigned for a production run if neces-
sary). He then breadboards input and
cutput substitutes (dummies) so that he
zan run and test the program conveniently.

38 Enter program into temporary

program store. and debug it
it this point the machine language program
s copied by hand into uC memory and run
w=ith dummy inputs and outputs. Any of

the schemes in (7) above may be used for
further debugging and program development.

3¢ Burn-in UVROM and exercise the board

«hen the program 1is apparently bug-free.
*t may be burned into a UVROM (Ultra-Vio-
et-erasable Read-Only Memory). and atten-
ion is turned to making the program re-

iable: an “exerciser” program may be
ritten to permutate through all possibil-
ties of inpu* and output combinations and
To catch any that don't work.[63-2]

"oy

- DEVELOP THE REAL SYSTEM

deemed ready, the in-
terfaces and the real., full system are
zonnected wup and run. As at previous
stages, trouble-shooting and final program
zhzanges will be necessary.
em is running smoothly, and
rouble is expected, the final program is
<orned into the UVROM again, and the uCon-
roller is then deemed completeu.

=~en the program is

no further

DL S S R

(3 SUMMARY

* yP may be incorporated into a control
instrument without spending large sums on
zurchesing special equipment. The method
s known as bench programming. The pro-

developed on paper using
the user and designer
The designer
a microprocessor and codes
into its machine language.
microconputer thet will
zcome the control instrument is first
.sed for debugging the proaram.
' Z

first
language;
in verifying it.

am is
turel

operate

en chooses
e program

e single-board
€

When the sys- .

BIBLIOGRAPHY

Refenence numbens correspond to zhe num-
bening o4 paperns in Proceedings uPIEEE-77,
1EEE Catalog No. EHO 125-5, $120.

11 Lance A Leventhal, Can structured pro-
gramming help the bench programmer?

12 Tony Karp, TLC -- a new systems léng—
uage.

21 Matt Biewen, The engineering design ap-
proach to microprocessors.

22 Edwin Lee, Design and document micro-
processor systems for easy maintenance.

31 Gregonry Zick, Jerny Vanaken, Comparison
of 16-bit microprocessor architectures.

32 Paul S Mitzen, Microcoding an MSI chip
controller.

33 Gopal Ramachandran, Development of mi-
crointerpreter for Intercept Jr.

41 Russ Walter, Universal assembly lang-
uage -- a quicker way to understand micro-
processors.

42 Endich A Pfeiffen, Applications=-Oriented
Keyboard languages for small microproces-
sor systens.

43 Kanl V Amatneek, No-language program=-
ming.

44 John Prendis, A keyboard for an engin-
eering language programming system.

45 John Buffington, E/L.
sembly language notation.

a universal as-

51 Robert & Chen, Rajeev Sangaf, A design
to share memory among microprocessors.

52 R L Krutz, Parallel

elements.

programmed logic

61 Bernand Canrey, Michaef Varanka, Control
box for programming. debugging and trouble
shooting.

62 Dwight B Sawin 111, Thomas P Hughes,
Real-time microprocessor software de-
bugging technigues.

63 Thomas Y Chen, Development of simple
function test card for the RCA Studio II,
a microprocessor-based video game.

64 Norman Rosengefd, Development of mi-
croprocessors and microprocessor-based

systems.

65 Tony Karp, A low-cost, machine-indepen-
dent system for microprocessor hardware
and software.

71 WiLLiam M Goble, Two hardware circuits
+ microprocessor = quick trouble-shooting.

72 Genald F Muething, Low-cost logic ana—
lysis.

Amatneek, Kanf V Amatneek, 1EEE Micropro-
cessor UPDATE Manual, June 1977. Publ

by Committee on Professional UPDATE., Phil-
adelphia IEEE, Univ of Penna Moore School,
Philadelphia, PA 19104, $10.

Peatman, John B Peatman, Microcomputer-

3ased Design. Pub 1977 by McGraw-Hill,
RYC .

THE GENERAL IDEA OF A uP: A BIRD'S CYE VIEW

WHAT IS A uP?

The uP chip replaces a portion of the
“amcuter known as the CPU. Central Proces-
2iag Unit. The -CPU is not an independent
amit. To be sure., it itself performs lo-

£ ¢ and arithmetic manipulation of signals.,
2.t it also manipulates other units to
Ttz signals in from the outside and out

s ain It does all this one thing at a

% m=. but at meqgahertz rate. It has been
S mcamd to a one-armed paper hanger.

It can do nothing alone. At the ve-
*» .=ast it neels a program store; i.e. a
W% chip for storing the sequence of in-
stroctions that it is to execute; and an
~'% (Input/Output) chip that will receive
wmz transmit signals Letween the outside
warid and the uP chip.

£ SBAT liE I ?

As comparcd to conventional Logic
®w.z:, these are the advantages of uP
Spsteas:

- 3ecause the uP is an LSI and because
"% %a3s universal application, it is bar-
gmfz-priced.

- Because it is a single chip, it takes
ess space.

- Secause it is a single chip, and
“wers is market pressure to design intelli-
gent 2ssist chips. the parts count is less.
"% mz.e-chip microComputers such as the
WP.% z2re already on the market.)

Zecause it is programmable, errors in
2., or changing customer requirements
T2t require a re-design of the board:

* rsprogramming is required.

' '.!.

0ff-the-shelf mass-produced uP boards
war =2 zpplied to many different custom de-
% gvs without any modification of hardware.
M. s program needs to be rewritten.

S @827 DOES A uP DOQ?

- #hile conventional logic chiPs pro-
swss one bit at a time, a uP handles seve-
" =z'ts (4, 8, 12, 16) simultaneously. de-
pemz mz upon the particular chip.

- L conventional chip (AND, OR) can
gw~*zrm only the one process for which it
wes m2ce, while a single uP has as its re-
gmrsaire sevenal dozZen processes, and it
pwr-farms any onc of them on demand.

- Zonventional chips are hard-wired in
Swe ssstem -- they can execute only what
Thes tawe been Wired to do; while a uP will
per*zrs any desired sequence of processes
WL Sepel zny change of wirding. The se-

quence is entered into erasable UVROM
chips. and it is called a program.

+ Since it is a single chip, it in-

creases reliability of a system in which it
is used.

4 WHAT DOES A uP ACCOMPLISH?

In a system,a uP
(1) enables the input terminals (reads in-
put data).
(2) manipulates the signal (performs arith-
metic and logical manipulation) and makes
procedure decisions. and
(3) turns on the output terminals (writes
data).

5 WHY ARE OTHER CHIPS REQUIRED?

To be able to operate at all. a con-
ventional uP chip requires a program store
and input/output adapters. The program
store instructs the uP what sequence of o-
perations is required. The input/output
adapter is required so that inputs may be
multiplexed into the uP and so that micro-
second duration outputs may be latched to
last long enough for practical applica-
tions. A minimum working system consists
of a uP chip connected on one side to a
UVROM chip that contains several hundred
steps of a program store; and on the other
side to an 1/0 adapter chip. so-called.,
that has a number of pins (say 16) through
which signals are received from and trans-
mitted to the outside world.

6 HOW DO YOU WORK A uP SYSTEM?

Aside from connecting up the several
chips to the uP chip, the main job is to
write the program -- the sequence of steps
that the uP is to perform. Once both wi-
ring and programming are successfully com-
pleted, the system will do the job it was
designed to do as soon as power is turned
on.

HOW MUCH DO THE MAIN CHIPS COST?

In unit lots the 6502 is $25. the
2708 is 335 and the 6520 is $9.75. The
price of the new computer-on-a-chip.
the 8748, is $275; ROM version., 8048, $10.

IS A MINIMUM uP SYSTEM A PROPER

A minimum uP system becomes a dedica-
Zed computer after it has been programmed.
It is not a general-purpose computer if it
does not have lots of memory chips. A ge-
neral-purpose computer has to have lots of
memory because you never know how big a
problem it will have to handle some day.

EVERYTHING YOU EVER WANTED TO KNOW
ABOUT UFS
REGISTERS PROGRAM -

REGISTERS

A uP system consists of registers.

Registers inside the uP chip are lettered
(A: X+ Y, etc).

2egisters outside the uP are numbered.
(from 0000 to FFFF).

The sum tota)l of these numbers is the ad-
dress space. -

16 bits will accomodate an address space
of 64K (65,.76) registers.
#3DRESS
The register numbers are called address-
es.

1f 84K addresses were listec in a book:
the book would have FF paaes of FF
lines each.

2ny address consists of a page number and
a line numbcer.

%2 4-digit address consists of a 2-digit
page number and a 2-digit line number.

J4TA

The numbers stored
called data.

4 4-bit register would hold a single hex
digit (nybble).

An 8-bit register holds 2 hex digits
(byte).

To hold &4 hex digits,
are needed.

420 wonk of thie ul’ 4ia done by shuffling
data 4in negistens.

in registers are

2 8-uit registers

LULTRUCTIONS
2°-CODES

2 uP can perform many ready-made func-
tions number2d from 00 to FF.

Zach of these numbers is called
tion code or op-code.

An op-code consists of two hex digits.
thus:A1s 27+ CCs etc.

Zach op-code tells the uP what operation
to perform. L

an opera-

IPZRANDS

The operand t:lls the uP on what number
to perform that operation.

The number following the op-code will be

called the operand.

Usually the onerand is a 2-digit or
4-digit aduress.

The operation called for by the op-code
is performe. on the contents of that
address.

Some op-codes
ber or else

require only the Lline num-
no operand at all.
In an op-codc that requires no operand
the operand is implied.
' 4

IASTRUCTION

.nd operand together are
instruction.

The op-code
called an

The written Llist of instructions (like a
wiring list) is called a program.

The program consists of op-codes and op-
erands.

PROGRAM STORE

The program is copied from a piece of
paper into the program store.

The program store nowadays i1s usually a
UVROM.

While a new program is tried out it is
temporarily stored in RAM.

While programs are being worked on.
are stored overnight in cassettes.

they

HOW THE uP
PROGRAM COUNTER
One of the many registers in the uP is
the program counter.
The program counter sends consecutive ad-
dresses to the program store.
In response to each address the uP re-
ceives an op-code or operand byte.
The only byte sure to be an op-code is
the first byte in the program.
The programmer must keep careful track of
subsequent bytes.
ADDRESSING

WORKS

For operating the numbered registers., the
uP issues an address signal on the ad-
dress bus. —

When a system is not halted, the only
source of addresses is the uP.

The address bus of the 6502 cons ists of
16 leads running in parallel from 'the
uP to most of the other chips.

DURATION
The address signal on the 16-bit address

bus lasts one uS.
This address duration is sufficient to
pick out the required register.
DATA ’
Simultaneously with the address, a data
signal is put on the 8-bit data bus.
The data bus consists of 8 leads running
to all chips in parallel.

The data signal also lasts one uS.

This data duration is sufficient for most
chips but too short for the real world.

INPUT/OUTPUT REGISTERS

OUTPUT DATA
Output data is captured from the data bus
in a latched register at the right mo-
ment.
The right moment occurs when the proper

address signal is issued.
INPUT DATA
nput data is gated onto the data bus at

the right moment.

>

EWERYTHING YOU EVER WANTED TO Know ABouT uPs -

SEQUENCE OF OPERATIONS

WEF-UP CIRCUIT

zomplete uP board contains a circuit
th2t senses the d-c line going on.
WEITART SIGNAL
" power 1s turned on, the power-up
zircuit delivers a long restart signal
to the uP.
Twz restart signal starts off the uP on
t=e programmed sequence of operations
23 described below.

Ti=z restart signal is also applied to the
“mput/outpyt chips (6520 and 6530).
#hen the I/0 chips receive the restart

zignal they disconnect themselves from
z22 real world(but not quite! Be care-
ful 1)
WESTEET POINTER
restart sicnal makes the uP look at
th2 restart pointer in the program
store. (In the 6502 the restart pointer
s at addresscs FFFC3D).
SRRRST LINE OF PROGRAN
%= restart pointer register contains the
first line of program, i.e. the address
«22re the very first op-code is stored.
S=Tl® 0P-CODE
2 4P looks up the reset pointer and
“ssues that address on the address bus.
“» response to that address the program
store sends cthe first op-code.
Te= uP decodes the op-code and figures
22t the numbor of bytes in the operand.
WETC# OPERAND
4P then sends out the next address to
f2tch the first byte of the operand.
.~ » the 6502 this address must contain the
.¥ne number :'here the data is stored.
= 4P then sends out the next program

#-cdress to fotch the rest of the oper-
and.

Tsiz address contains the page number where
the data is stored.
ETLE DATA
T%= .P now sens out the address furnished
Zw the operanc.
Ta= uP finds tie data at this address.

BECUTE OPERATIU:!
7= uP next exccutes the operation.
BESLE OP-CODE
d2« the uP fetches the next op-code from
th= program store.
Tw= uP decodes the op-code and deter-

mines the number of hytes in the oper-
and.

S8 T=IS WAY THE 4P VORKS ITS WAY THROUGH
E WHOLE PROGR 1.

BERST LINE
#t=~ the program proper is finished, the
~® would nornhally read the random data
n the next line treating it like an
sc-code.

P A
Imzerpreting resident random number as
2n op-code nay wreak havoc with the
zrogram and with real world equipment
zamnected to the uP system.

L .
&

JUMP ROPE
To prevent this from happening, after the
last active line we insert 'jump rope’
instruction.
A Jjump rope instruction keeps the uP
jumping in one place. :
CONTINUOUS LOOP %
In a controller there is no “last line".
In a controller the uP may run in a con-
tinuous loop monitoring the equipment

CAPABILITIES

0F

THE wP CHIP:

INSTRUCTION SET AND ARCHITECTURE

Let us review the operations that a
“* is capable of performing. We will use
tre 6502 as an example. We can order it
*z do the following kinds of operations:

‘«) A&hh, i.e. AND the Accumulator with a
b number hh.

2) X+1, i.e. increment register X.

2) A=X, i.e. copy into the Accumulator

the 8-bit data
el if 0,J+9, i.e.
last preceding
was zero. then
next 9 program

(signal) in register X.
if the result of the
calculating operation
skip (jump. branch) the
bytes.

The above examples all take place in-
#°2e the uP, but there are also similar op-
#rations that involve external registers
®.czh as those for sensing and controlling
“%= outside world as well as those for the
seripherals” -- displays. keyboards., mem-
ey -

The computer people historically don't
“nzerstand such a simple approach. Because
“%2y do not deal in signals but rather in
Wi.uminous calculations and texts. they need
=%z help of a language with mnemonics (from
"%z Greek., probably meaning difficult to
"emsmber) or Fortran., Basic., APL., high-level
~#7guages., low-level languages,
#r"ented languages, machine independent
“#rguages, etc.

As circuit designers, the idea of
‘19ring and manipulating a signal by simply
#='ting down the desired step is appealing
"% 4s -- no solder, no wire., no chips. no
"% 2cts, no real-estate. Just write down
wtat has to be done in pencil on paper, look
4@ the op-code- for the particular uP and
#urmch the op-code into RAM registers! In-
#%z2d of connecting up 8-bit registers to an
#-2it full adder, we write “to the number
‘%'znal) in the Accumulator ADD the number
"%iznal) in the X-register” or simply A+X.
=% you wish to call the plus-sign a lang-
w@ze., you call this engineering language.

applications:

ENGINEERING LANGUAGE

True. some new symbols will* have to be
added to the traditional ones. For in-
stance, in a uP we are able to shift the
whole register one bit to the left or to
the right into a one-bit register known as
Carry. The left (=--) and right (-->) ar-
rows are obvious choices for this purpose.
If the programming is done on a typewriter,
we can pencil in the arrows. or we can get
used to symbols such as SL and SR for
“Shift left” and "Shift Right".

We have to become accustomed to some
new logic symbols as well because the +
sign is preempted for addition. We can
use "&" for AND. "V" for inclusive OR
and "¥" for exclusive OR.

No symbols are available for jumping
to another point in the program sequence.
and for that the capital J seems good --
since it is not otherwise used.

LIST OF ENGINEERING SYMBOLS

In the back of this manual there is
a list of symbols that have been used and
found practical. Most of them are obvious-
some require getting used to.

SYMBOLS UNIVERSAL FOR ALL uPs

If such symbols are used, then every
uP may be programmed by using the identical
symbols. This doesn’'t appear to be saying
much, but in view of the multitude of dif-
ficult assembly languages -- a different
one for each uP -- this is quite an advant-
age. These symbols will be used through-
out this manual.

@ INSTRUCTION SET:
(A) QPERATIONS WHICH

HA

In addition to AND, OR, EXOR. liOT,
®%= uP can perform dozens of other opera-
Bans . It does them one recgister (8 bits)
2 time. (Some uPs have 4-bit, 12-bit
16-bit registers).

As an example. the full instruction
of the 6502 and a table of the symbols
- is shown in chapter 6.

Here is a summary of operations that
‘pulate the .signal.

® LOGIC: &, V. ¥ (and. or, exor).
ARITHMETIC: +, -, =, ¥, *t.

¥ is PUSH, and it means the same
73 as "=", nanely "into first register
contents of second register”. Here
first register is an automatic “"stack”
"ster where the address is decremented
r every operation.

4 is POP, and it is the reverse of
- The address is automatically IN-
2nted each tine.

®ULTIPLY AND DIVIDE BY POWERS OF TWO:
<-, ->.
<- ig SHIFT LEFT. The contents of
bit are shifted into its neighbor on
teft. Bit 7 goes into carry flag fC.
I receives a zero. The resulting num-

fa<{7TeI5T413[2 1] 0 [<-0
is 2x the original number. Think a-

it.

=» is SHIFT RIGHT.
=%e original nuaber.

e B B EA A K O o

SEPARATE INDIVIDUAL BITS: 9, .

The result is

& is ROTATE LEFT.
CE-— 716 5] % 0

bit is broucht into the carry flag
2t a time. There it can be examined
an IF instruction, or it may be mo-
‘=c before returning it back to the re-
er.

is ROTATL RIGHT.

C-E(}-[:l |s]4|3|2|1i0|:)

II ARCHITECTURE:
PROGRAM COQUITER —-- THE ORDER IN WHICH
THE uP READS THROUGH THE INSTRUCTIONS

The program counter register, pC,
points at the next address in the program
store. lormally the program counter is
incremented automatically as each instruc-
tion is read by the uP. I1f the *result of
an operation is not the normal one, then

the program counter JU!IPS to another part of
the proaram.

There arc 7 occasions on which the
program counter junps instead of increment-
inag s

(1) IF-DECISION: If the result of an opera-
tion is not the expected one., there is a
small jump (Lranch) to an adjacent part of
the program written to handle that situa-
tion, and to slip right back into the same
program.

(2) SUBRCUTIMNE: If the next step in the pro-
gram is uritten out in detail elsewhere --
to be executed and then to jump back to the
normal order -- then the program counter
jumps to this SUBROUTIHNE and jumps back when
finished.

(3) PROGRAM BREAK: During trouble shoot-
ing (DEBUGGING) of a program, it is conven-
ient to have a short BREAK sequence to help
in analyzing the problem. 1Its starting ad-
dress must be written into the BREAK point-
er registers (FFFE&F 1in the 6502). The
BREAK instruction (00 in the 6502) is tem-
porarily inserted -- like a probe -- at
strategic points in the program. It is re-
moved when trouble-shooting is over.

(4) HARDWARE REQUIREMENT: When a slow piece
of outside equipment which is sensed or con-
trolled by the uP board is ready to communi-
cate, it sends a signal to the INTERRUPT RE-
QUEST pin. IRQ/, of the uP chip @4 on the
6502). The uP looks up the starting ad-
dress of the appropriate piece of program in
the IRQ/ POINTER registers (same as BREAK in
the 6502), and the program counter jumps to
point at that address.

(5) UNCO!DITIONAL JUMP (frowned upon): for
patching in a new piece of program for which
no room is availakble at that point in the
nroaram.

(6) INTERRUPT IHMNEDIATELY (HMI): When sup-
ply voltage falls low enough to fear a power
failure, in the last few milliseconds the uP
can still DUMP important registers into a non-
volatile memory (if such is indeed on the

2). If suchi a lou-line sensor is install- o
@ the board, it signals the NMI pin of the 7

%5 of the 6502), and the uP makes the pro-

Grounding
Grounding

of pin 6 (NMI/).
of pin 40 (IRQ/).

counter jump to point at the address
in the NMI, ton-Masked-Interrupt.,
stars (FFFA&B in the 6502).
=%= program, an appropriate secquence has
written to implcment the DUIP.

FESTART If, while running the pro-

. the operator wishes to start from the
%8 HALTS the uP and touches the RE-
switch, which-sets the program count-

%2 point at the top line of the program.

#%cwn in the RESET POINTER registers

2 in the 6502).

Zoviously all the above pointers

imes called VECTORS) have to be writ-
“mtc the prdgram before the real
2% the program starts.
"=3 chore is part of what
BLIZING.

busi-
This house-
is known as

III JUSTRUCTIOIN SET:
ZUSTRUCTIONS THAT

ITAE THE PROGRAIl COUNTER JUIIP

70 sum up, the program counter

Semorize program counter rcading and
2k (jumps to pointer FFFEYF); later

E B.

2zppll or J:(ppllw). ppll* means that
ss and the next one.

=1 . This i: an "idle” instruction
increments the program counter without
anything uscful. It may be used as
mmert tire delay (2 cycles).

The progra . counter is also made to
2y groundin'' one of three uP pins:

It jumps to pcinter FFFA&B when pin 6
3 is grounded. It is returned by pro-

To repeat., the program counter jumps
zhe followine conditions:
BF-CONDITIO!N

SESROUTINE

£ INSTRUCTIUN Z

SN INSTRUCTICIH

BBLING INSTRUCTION

pointer
At that point

to

% Grounding of pin & (IRQ/).

IV ARCHITECTURE:
ELAGS -- A SCRIBBLE PAD OF INTERIM RESULTS

So that the uP can evaluate the re-
sults of an operation and make decisions
for further processing., the significant
results of the operation must be jotted
down somewhere. A set of one-bit
latches. FLAGS: has been provided in the
uP for this purpose. The flags are set
or reset automatically while certain opera-
tions are being performed.

The following flags

in the 6502 are
typical:

(0) fc, Carry flag.

When Bit 7 over-
flous,.....

fc=1

(1) f2z. Zero flaa. When the result of an
operation Teaves zero in the register,

O s O R 5 G ehay T cme 1231

jumps (6) fV., oVerflow flag. When bit 6 over-

=3z following 5 instructions: flows’ fv=1

IF result of previous operation is X, (?7) fN., !legative flag. When the result

d+hh. These instructions are de- of an operation makes bit 7=1,4s<« « « <~ , fN=1
2=d in section VI below.
Wsmorize procram counter rcading and There are also 16 trial instructions
= opll; latcr J:ret S. pnll are page that will set flags without going thru the
Line number uhere the subroutine is lo- actual computation. For example,

i fl:A-hh

will set flags as if the A-hh instruction
had been carried out. yet the the contents
of the Accumulator will not change.

The two trial
fl:A&CZLL), and
fl:A&CpplL L)

will in addition set fv®mbit 6 and fN=bit 7.

instructions

v INTRUCTION SET:
(C) INSTRUCTIONS WHICH MAUIPULATE THE FLAGS

In section IV the flags were set and
cleared to correspond to certain results of
register-manipulating instructions.

Two of these flags., fC and fV., may be

| manipulated by the program; i.e.,» fC=0, 1.
#astruction J:ret I. and fVv=0.

jumps to pointer FFFCED when pin 40 Finally, there is a one-bit latch

is grounde. that

is not affected by any operation.but

i stays whichever way it is set by the pro-
jumps to pcinter FFFEGF when pin & grams
is groundec. It is returned by

am instruction J:ret I. (3) fD, Decimal mode flag.

While fD=1,
binary calculations are done in the uP in
decimal numbers; i.e.. binary-coded-decim-
al rather than HEX.

fnother flag which is set and resct by
s@=rations is the Interrupt request dis-
flag, fI. It is automatically set
"mz hardware RESET and INTERRUPT opera-
to prevent another interruption before
zresent one is over. It may be set and
#% oy program instructions fI=1 and fI=0.

*I, INTERRUPT DISABLE flag. While fI=1,
“rrupt requests, IRQV at pin 4 are ig-

#=%en a subroutine, a break or an inter-
t2kes place., the uP automatically stores
=2z flags in the STACK and returns them
=Re end.

%one of the flags, or internal register%
#ccessible for data display and inspect-
. =“owever, there is an operation., rF¥.
=i ll copy all the flags into one regist-
2% THE STACK (which is located on page 1),
#~y external register, of course. may be
~2yed. The numbers in parentheses above
Z%2 bit numbers of the flac register.,

Function

Negative

oVerflow

Reserved for future use
Break

Decimal

Interrupt § disable
Zero

Carry

Flag

ONHO® I < Z

k] Flag register

VI INSTRUCTION SET:
“3) DECISION INSTRUCTIONS

In the 6502 instruction set there are
~F-decision instructions. Each has the
B if X.J*thh". It means "if condi-

£ exists, jump hh bytes forward or

Condition X is the state of one of the
S. such as "if fCc=1..." In the course
running a program, when the uP comes to
If instruction, it checks the state of
specified flag. If the flag is in the
= specified, the jump takes place. If
« the program counter takes it to the
T op-code.

Remember that by the time the operand
vas been read "y the uP, its program
*ter is already pointing to the next op-
E Therefore any jumps forward or
* have to he counted from there. This
zo be done in signed hex! This s
t¢y -- see hex chart.

p—"

Here is the set of IF-instructions:

(1) if result was zcro: if =0.,J+hh.

(2) if result was not zero: if 70.,J+hh.
(3) if result was zero or signed positivea
i.e. between 00 and 7F: if POS,J+hh.

(4) if result was signed negative, i.e.
between FF and 30: if NEG.,J+hh.

(5) if fC=0,J+hh. i

(6) if fC=1,J%hh. S

(7) if fv=0,J%hh.

€3) if fv=1.Jf hh.

VII INSTRUCTION SET:
(E) ADDRESSIN

Addressing is a simple concept. The
“normal”, missionary way of stating an ad-
dress is to write the page and line number.,
for instance: A=(pptl). This is known as
ABSOLUTE addressing. lowever, there are
occasions when this is unnecessarily cumber-

some . There are 6 shortcuts for such oc-
casions.

(1) INDEXED INSTRUCTIONS

If there is a list of addresses whose
contents are needed sequentially, there
ought to be a simple way of writing just
the first address and letting the uP do the
drudgery of going through all the addresses.
There are special instructions that do just
that. These instructions are said to be
written in the INDEXED MODE. There are five
such in the 6502 instruction set. ‘

(2) SAVING ADDRESS BYTES WITH
ZERO-PAGE INSTRUCTIONS

This type of instruction permits
writing a foreshortened address pertaining
to page zero only. In these instructions
only the line number has to be written.,
thus: A=(zLL).

(3) ACCESSING LISTS OF ADDRESSES WITH
INDEXED INSTRUCTIONS

0f the five indexed instructions in the
6502 three are straight-forward. A starting
address is written down., and then the number
in the INDEX register (X or Y) is added to
this address. As the index number is increm-
ented, new sequential addresses are created
automatically.

There are three such automatically-
addressing instructions:
A=(ZLL+X)
A=(pplL+X)
A=(ppll+Y).

The following is an example of how
they would be used in a program:

X=00 looplhh]
A=(ppl L+X) fetch NUMBER
J:sub READ.ACCUM READ.ACCUM
X+1

fl:X-hh

if /0.,4-5 pool

The loop jumps ecound hh times, and
WWES time the next register in scquence is

ST into the Accumulator, starting with
o

In this éxample looplhh]l mecans “go
Mmucc the loop hh times.” “pool” is

e spelled backward; it indicates the
WmELro point of a loop.

MRS INDEXED INSTRUCTION WITH

CHOICE OF LISTS

dn occasion t'e ultimate user of the
Zzz2rd Wwill have .a choice of several fun-
2=z to perform (i.e. several lists of

sses to choose from). If the program
itten into a "ON, then the user can
=22ify the pro-ram line that cives the
rting address of a list. To accomgod—
this situaticn there is a type of in-
ztion that loo!'s up the starting ad-

of the list in paqe zero of RAM. This
ss is choser 2nd inserted by the user
* the zero-pa : address. The uP looks
42 and procec:.s as with any indexed in-
wtion. Here is an cxample of this
of instruction: A=((ZL&*)+Y). Since
#idress requires two bytes -- page and

-- two zero-page registers (zZ€U and
) are uscd up for stating the first
r=ss. This is expressed as z€f*.

W e

oy

-

The followinc program uses this in-
paction:

Zegx)+Y)
PROCESS.ACCUMULATOR

=*=hh

1.1-5>—

This instruction is used in the.
s = program in section 264,

3ecause the uP first looks up the
0 szirect”) address on page zero and then
2 through ("indexes”™) the list start-
2t that address. the name INDIRECT IN-
2 has been aiven to this type of in-
mction.

5 PICKING UP SCATTERED ADDRESSES WITH
INDEXED INSTRUCTIONS

Sometimes thc addresses that have to
~2cked up in crgquence are not contigu-
E -- such as tiir addresses of registers
zifferent 1/0 adapters. For such oc-
‘ons these scattered addresses may be
:::d in a sincle list on page zerp, and
Bere is a type of instruction that will
#=ar (“index") through this list and then
§ ‘=zirectly”™) look up the required regis-
Bwrs. Accordinaly, this type of instruct-
Wer is called Ii0!XED INDIRECT.

An example of this type of instructfion
T A= ((ZRL+1*))

Here is the way it would be used in a
Fazran:

% ! z
| 0
I X)))
Bmues PROCESS.ACCUMULATOR

|
E

g :-0nh
e

L-5

The first time around., since X=0, the
first required address will be looked u- in
two consecutive zero-page registers (auto-
matically): first the required line number.
then the page number. The up then goes to
this address and reads the contents into the
Accumulator. The contents are processed in
the subroutine PROCESS. THE.ACCUMULATOR
and the index X is incremented twice so as
to skip over the zero-page register that con-
tains the previous page number. Hext the in-
dex X is tested to see whether all the regist-~
ers on the list have been read out. Since
each instruction gobbles up two :zero-page
registers, the temt number/has to be twice
the required number.

(6) STACK INSTRUCTIONS

Stack instructions store and retrieve
data in some particular part of memory wi-
thout requiring an operand, i.e. address.

In the 6502 stack instructions auto-
matically address page 1. In the PIEEE-?77
board addressing page 1 locates page 0.

Each next data is tossed on top of the
stack, or pulled from top of stack. - Such a
system is known as LIFO -- Last In, First Out.

The address of each next register is provi=-
ded automatically by a counter known as
stack pointer. pS. The commonly used syma-
bol for storing data in the stack is a .
down arrow ¥ . It is often referred to as
PUSH. Thus. Ay may be read as “push Ac-
cumulator on stack”. To read stack .data
into the Accumulator, an up-arrow is used,

s A% is read as "pop the Accumulator
from the Stack™. .

In the 6502 the only other register
that can-be pushed or popped is the Flag
register, rF.

The stack is also used by subroutine,
breakfinstructions and by hardware . inter-
rupts. Since these instructions tempora-
rily suspend the orderly operation of the
program, the uP automatically stores the
program step at which it was interrupted
and the contents of Accumulator and Flag
register at that time, so that it knows
where to return when the interruption has
been taken care of.

STEC-BY=-5Tkr DESCORITTICH OF TEE OFERATION

FCWER T RNED ON

As the power supply voltage rises to-
ward +5 volts there is a circuit on board
(POWER-0ON) that shorts out the RESET pin of
the uP to ground for a moment and then re-
leases it. Release of the RESET pin puts
the uP into starting sequence of S uS. At
the end of that time the uP reads registers
FFFC.D and jumps to the program line that
the programmer has left there. It then pro-
ceeds to exccute the prooran. Note that no
start-up buttons of any kind are required.
The uP starts working the moment the board
is turned on.

Let us oiserve pouer-up operation of
W with the program startino out as fol-

=— 1600 . 427000

A9 FO -- A=F0

30 0F ¢t (o 0b)=r set pins AI-3
AD 0B 6C A=(6C0B) recad input

®When power svitch is turned on, nover-
zircuit holds (ouvn NESET Lline for a rio-

ADRS IHTERYAL EXTERIAL
3US DATA isUS ACTIO. ACTIO!

TZSET line is released; five cycles pass
or internal start-up of uP.

FFFC 10. line number saves 10

SEFD 00, page number saves 00

#0610 A9, op-code saves A9
decodes A9

2011 FO, constant saves FO
A=rQ

2312 8D, op-code saves JD

decodns O
2013 0%, line number saves 0%
6E. page number saves 6L

AD. op-cude saves AD
decodcs AD

08, linc rumber saves 90

G6E, pacce number saves OO

8£00 input si nal A= (o)

12.2 Step-by-step power-on start-up of
uP. Note that stant-up (8 automatic-
saitches have to be activated besides
ing on powen. Note that on cycle 13
address bus carnries not the next se-
Zial addness uz nathen the address of
register beini Loaded.

ram: 0020 if =0,J43

2020 op-code FO save F0

decode FO
2021 offset (3 save 03
2022 dgnonre . 0022+02
0025 op-code save on-code

2 12.3 sStep-by-step operation of an if-
n-jump instruction. Note that cycle 3
zsed solely for calculating the next
gram Line; whife data do appean at this
2, they ane iagnoned.

Figs 12.4 to 12.8 show pictorially how ca-
are routed on the data bus for instruc-
“2n fetch, rcad and vrite output. and read

< write memory.

FO (ppll)=", (e, WRITE

4-6

ouTPUT
1/0 1/0
A?STR ADPTR
6320 63520
e —
W e X e 1l .
R Lo i o 1o
_ =e— NSTRUCTION o | ¢50z; X
10,071 ‘s:: R ——
- J
| AT R s nyTe >
| o
i
|
N)
P2 | -zl
‘ x I i
| ! l ¥
| |)
] S 1) . | 1o
[R e e L
f { | ADDRESS i | ADDRESS J '
LT SHL) I ¢
00 LIl e et
P R |
PRGRM rp anH r)
STORE L PRGRM
STORE
2708 vovn STORE
2708 2708
e 12.4 Data flow: .) R s
B instiruc- 19 12.5 pData flow: Reading an ; 6 .
&; ;rg o input signal trough an I/0 aaapter F1g_1?- bata filow: Sending
B RAOgIn chip. ‘he adcdress of the register {writing) an output.signal
Fe. address 1)02. in the adapter is 1000. through 1/0 adapter chip.
lote that R/V line is down.
:-:.'.:::.':::-;:::: LAPUT
) ouTPUT = -
1/0
ADPTR 1/0
6520 ADPTR
[6520
1 i _._.
5ozl fup
l . i‘ G502
' Lo HT ————
. i ' uJﬁ.-'---
L
VAT S i I
| ; Ak R/ Oﬁ\ >
i S RAMR/W ~ =
‘ 3 P [sy RAMR/W
t _! R "‘"—’-
‘ qdrlt¥> | 7»JZL> -
| e |
]
o 00 — i 00
| ADDRESS G >
e © | ADDRESS J
ke 0 o LIWEH e
] Ll Ity e 0
b - L7 o0 YY)i [
PRGR! i
STORE MEMRY PRGRM
olUnk STORE MEMRY
2708
; ’ ‘
Fig 12.7 Data flow: Reading data fron Fig 12.8 B S :
a register in nemory. The register ad- g : dd Dataoééow. L Haws Ghte
dress is J00O. tiote that a memory re- menofy aguareos 0. KEIENG ADLG KW=

Wictar 15 bead siuping ohasd 2. ory also takes place during phase 2.

4-8

6502 ARCHITECTURE

(S\IMPLIFIED)

Bitys & 8 4 82 1.0
-a}, A-REGISTER (ACCUMULATOR)
=3 X- REGISTER (INDEX)
Y-REGISTER (JNDEX)
SET4V
¢ <
&= fn|fv| - | fB1fp|f1]52Z] fc| rF, FLAG REGISTER™
S ¥ o
W=HARITHMETIC & LOGIC UNIT
L DATA
” PA ' Jdgzha’,_
- GE '
L] R “Thec
sl 41131124 11019 , 8 L%IE s 14 3 %l 110 N
] i 2
. PAGE : > nl
= pC | PROGRAM| COUNTER =
E - N O
, <
‘L*?' é:q‘)%. STACK POINTiR(AGE 1) e
. iN
PAGE | 5 Line 8

* FLAGS £: N result was Negative Zresult was Zero
V there was oVerflow Cthere was a Carry
B "Break" subroutine lson
D Decimal mode is on
I Interrupt (s disabled

STRUCTURE ,AND LINKS 70 OTHER CHIPS

!@ CCOOT 737 (9] = ?CRALT—CH PAD
ﬁu—_ ;z:;%z‘. (41 (2] —— MEMORY

DURH (&) 1 (4

‘) :]
[DATA BUS DATA
— H[e&—%?swqg =%
- v P CH!D(S 7 |reg~6EOO'
:T—‘ifllfiLlW:—:: ® s
TIIIIIIE '—'\[l +HR— i(
—43& A >3 0
| | e
D f%\:—'
-]
' Sy Lf: - 16E0],
<X - ! L BIREC-
ARITHMETIC [} g-é%_—r
| |2 COGICUNIT |1} o] KEG.
TTiTTI Fi‘%‘; Pl
[T1 11 1;';?= o
FLAG REGISTER |
N»!/ BiD| 1} [Z]|C : {
{ IF (FLAGS),J2hh { 4~16-E>ITSS
Thh_
% PROGRAM CIR _; J'gﬁg .
——Q_T'-'o-ﬁ—p‘l'l-p :_'—-——-
 DP-CODE
 DECODER_
= l¢

780110 KvA

	IEEE uP Manual-course
	IMG_20220504_0001

